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The scattering of long gravitational waves by a floating elastic plate is investigated using linear shallow-water theory. For a plate 

of arbitrary shape, the solution of the problem is reduced to a system of boundary integral equations. Using the example of a 

rectangular plate, the solution obtained is compared with existing theoretical and experimental results. The behaviour of the 

buckling of a rectangular plate and of a strip of constant width is compared for oblique incidence of surface waves. 0 2001 Elsevier 

Science Ltd. All rights reserved. 

The interaction of gravitational waves with a deformable platform, floating on the surface of a liquid, 
is of interest in the study of the dynamics of ice fields and artificial structures (airports and islands) 
when acted upon by sea waves. The horizontal dimensions of these objects considerably exceed their 
thickness, and they are usually modelled by thin elastic plates. The external waves are assumed to be 
plane and regular, and the amplitudes of the surface waves as well as the flexural vibrations of the elastic 
plate are assumed to be small. The liquid is assumed to be inviscid and incompressible and the flow is 
assumed to be potential flow. 

A considerable amount of research has been devoted to investigating this problem for plates of specific 
shape: the behaviour of a rectangular plate floating on shallow water [l] and on the surface of a liquid 
of finite depth [2-4] has been investigated, and similar investigations have been carried out for a circular 
plate on a shallow liquid [5] and on a liquid of unlimited depth [6]. The methods employed to calculate 
the elastic deformations of the plate depend on its specific shape. The incidence of surface waves on 
a plate of arbitrary shape, floating on the surface of an infinitely deep liquid, was considered in [7] using 
a variational approach, for the numerical realization of which the panel method was employed. As 
theoretical and experimental investigations have shown (see, for example, [2,4]), long gravitational waves 
produce the greatest plate deformations. 

In this paper we investigate the linear hydroelastic problem for a plate of arbitrary shape floating on 
shallow water, using boundary integral equations. The initial two-dimensional problem is reduced to 
a one-dimensional problem, since the required functions are simply the values of the potential and its 
normal derivatives along the plate perimeter. 

1. FORMULATION OF THE PROBLEM 

Suppose a uniform elastic plate, bounded by a contour S, occupies the region Qr in the plane of the 
horizontal variables x and y, while the region Q2 outside the plate is a free liquid surface of uniform 
depth h. The velocity potentials, which describe the motion of the liquid in these regions, will be denoted 
by cDt(x, y, t) and (P2(x, y, t), where t is the time. 

According to linear shallow-water theory (see, for example, [l, B]), the velocity potential in the pure 
water region QZ satisfies the equation 

A@ =la2@* a2 a2 
2 gh at2 - (x,y~R~), A=a,2f2 

ay 

tPrik1. Mat. Mekh. Vol. 65, No. 1, pp. 114-122,2001. 

109 



110 I. V. Sturova 

where g is the acceleration due to gravity. The elevation of the free surface Z(x, y, t) is found from the 
relation 

The normal buckling of an elastic plate W(x,y, t) is described by the equation [l, 81 

Here E, pl, h,, v are the modulus of normal elasticity, the density, the thickness and Poisson’s ratio of 
the plate and p is the density of the water. 

For shallow water the following relation holds 

:=_,,-,)A@, (x,y~Q,) 

where d = plhl/p is the sag of the plate. The following matching conditions, denoting the continuity 
of the pressure and the mass flow, must be satisfied on the boundary S 

aa, _ aa2 “1=&$ (X,YES) 
at at ’ an (l-1) 

where II is the direction of the normal to the contour S. 
It is assumed that the plate is in contact with the water at all points and at every instant of time. At 

the edges of the plate the free-edge conditions must be satisfied, namely, the bending moment and the 
shearing force must be zero [9]. These relations can be written in the form 

+ d(S)E 1 aAW 

an ’ 
-=v, $ 

aw a2w 

an 
a’(s)as-- asan 1 (X-Y E 9 (1.2) 

where a(s) is the slope of the outward normal to the x axis, s is the arc coordinate of the contour S, 
vi = 1- v, and the prime denotes differentiation with respect to s. It is assumed that the incident wave 
propagates at an angle p to the x axis and is defined by the velocity potential 

@o(x,y,t)=~o(x,y)exp(-iwt), @a =-~exp[~~~(xcosp+ysinP)l 

where a is the amplitude of the incident wave, CII is its frequency and k0 = W/ X@ is the wave number. 
Assuming that the motion which arises as a result of the scattering of surface waves by the plate is steady, 
we will seek the solution for Qj (j = 1, 2), Wand Z in the form 

CDj(X,Y, t)= $j(X, y)exp(-iot), W(X, j, l)=W(X, y) exp(-iwf) 

2(x, y. t) = .2(x, y)exp(-iw t) 

To determine 4(X, y) and w(x, y) we obtain the following problem 

A4’,+ 6.1 

2 

-4, =o, w= 
g(h - 4 

CL Y E Ql) 

A$2 +k&, =0 (x,y~R~) 

with the matching conditions on the boundary S, obtained from (1.1) 

(1.3) 

(1.4) 

(1.5) 
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We must also take into account boundary conditions (1.2) and we must satisfy the radiation condition 
for the diffraction potential & = o2 - 40 far from the plate 

2. METHOD OF SOLUTION 

We will change to dimensionless variables, taking h as the length scale of the depth of the basin 
and a as the time scale. Equations (1.3) and (1.4) have the following form in dimensionless 
variables 

xA%, + hAQ, + r$, =0 (xv y E !A,) (2.1) 

A@z + ozQ2 = 0 (x. y E CA,, (2.2) 

D 
x =- 

mh4 ’ 
h=l-o*y, 

We will seek the solution of Eq. (2.1) in the form [2] (everywhere henceforth summation is carried 
out from m = 1 to m = 3) 

9,(&Y)= CV,(~~Y) 

where the functions IJJ,(x, y) (m = ,l, 2, 3) satisfy the equations 

(2.3) 

Nr, + knw, = 0 (xv Y E a,) 

while the quantities k, are the roots of the cubic equation 

(2.4) 

Xk3+ik-r=0 (2.5) 

This equation is a special case of the general dispersion equation for flexural-gravitational waves in 
an elastic plate, floating on the surface of a liquid of finite depth (see, for example, [lo]), assuming the 
liquid to be shallow and assuming the plate’to have zero sag. Equation (2.5) has one positive real root 
kt and two complex-conjugate roots k2 and k3. 

Equations (2.2) and (2.4) are Helmholtz equations. The corresponding Green’s function G(r, rl) in 
general satisfies the equation 

AC + k*G = 2x&r-r,) 

and the radiation condition in the far field has the form 

G(r,r,,k) = -$ H;‘(kR) (2.6) 

r = (x. y), rl =(x,,y,), R* =(x-x,)‘+(y-y,)* 

where 6(.) is the Dirac delta function and Hg)(.) is the Hankel function of the first kind of zero order 
Using Green’s theorem in the region RI, we obtain 

(2.7) 

where u,,, = K Ed = 2 if the point r is inside the contour S, &1 = 1 if r is on the smooth part of S and 
E = a&r if r is a corner point, and o. is the solid angle at which the contour S is seen from the point 
r. A similar integral relation occurs in the region Qz 
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&2+2(r) = -!-i [ Q,(r,)$ r,r,.o)-G(r,r,,o)~(r,) ds+2$,(r) 
I 

(2.8) 

where &2 = 2 if the point r is outside the contour S, &2 = 1 if r is on the smooth part of S and 
E = 2 - a& if r is a corner point of S. 

To determine the potentials $*(r) and tj2(r) inside the regions Qi and & we need to determine the 
quantities v,(r) and @.r,Jr)/&z (m = 1,2,3) on the contour S. Using the point r, lying on the contour 
S, we obtain a system of four integral equations, the first of which, by relations (1.5), (2.3) and (2.8) 
has the form 

(4 y E 9 (2.9) 

while the other three are Eqs (2.7) with m = 1, 2 and 3. Two additional equations are obtained from 
conditions (1.2) which, using (1.3), (2.3) and (2.4), can be written in the form 

=o (&YES) (2.10) 

After determining the boundary values of i&,, and $r,l& (m = 1, 2, 3) we can calculate the normal 
buckling of the plate 

The characteristics of the diffracted surface waves are determined by the diffraction potential &which, 
by (2.8), outside the plate is equal to 

Using the asymptotic representation of Green’s function (2.6) in the far field [ll] 

we obtain 

-+ io$2(n, cost)+ n2 sine) 1 exp[-ia(x, cos9+ y, sin@]ds, 

where n = (n,, n2) is the outward normal to the contour S at the point x1, yl. 
We will express the amplitudes of the diffracted waves zd = i@& in the far field in terms of the 

Kochin function H(o, t3) 
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and the energy flux Q, removed by the scattered waves (the so-called scattering cross-section) 

(2.11) 

and also the perturbing loads (the horizontal forces and the moment about the vertical axis) of the first 
order and the average drift loads of the second order, acting on the plate [2,3,6,7]. 

3. SPECIAL CASES 

It is of independent interest to consider some special cases of this problem. When D = 0 the plate is 
equivalent to a floating liquid (for example, broken ice). The motion of the liquid in region Szi, like in 
the region of pure water QZ, is then described by the Helmholtz equation 

A$, + c2$, =0 (x,y~ R,), c2 = rh 

Boundary conditions (1.2) do not apply here. When c = 0 we obtain the case of a rigid plate floating 
on the free surface of a thin liquid layer. Green’s function for Laplace’s equation has the form 
G(r, rt) = In R. If d = h for a rigid plate, we have diffraction of surface waves by a vertical cylinder 
of transverse cross-section S. In this case the liquid motion only occurs in region S& and the no-flow 
condition @@rz = 0 must be satisfied on the boundary 5. 

When modelling a plate of floating liquid, the problem becomes equivalent to the problem of the 
diffraction of surface waves by the stepped irregularity of a bottom. For a rectangular trench a solution 
of this problem was obtained in [12] by the method of integral equations. 

4. A RECTANGULAR PLATE 

We will demonstrate the method using the example of a rectangular plate. Suppose a plate of length 
L and width B occupies the region Ix1 6 L/2, lyl c B/2. Boundary conditions (2.10) along the straight 
lines simplify to 

Ck, knv,,, + VI 3 =O. Zk,,,& 2% k,v’m -VI nt 
as2 

=o (&YES) (4.1) 

At corner points of the plate the conditions for the bending moment to be compensated by the shearing 
point force [2, 31 a2w/&ay = 0 must be satisfied, which corresponds to the condition 

(4.2) 

For a numerical solution, the parts of the contour S, parallel to the x and y axes, are split into N, and 
NY equal sections respectively. Each section is then divided into three equal parts, two auxiliary internal 
points are introduced, and on each section four-point cubic form functions are used. The total number 
of points at which the unknown functions are determined equals M = 6(N, + NY). For each node we write 
down a discrete form of Eq. (2.7). Th e set of these linear algebraic equations forms the following system 

A,[v~] = B,[av,/an], m = 1,2,3 

where A, and B,,, are square matrices of dimensions M, and [+,J and [alCl,lan] are the vectors of the 
nodal values of the corresponding functions on the boundary S. From these relations we can write 

Iv,,,I = C,,,[~~,,,lch], C,,, = Ai’B,,,, m = 1.2.3 (4.3) 

Using integral equation (2.9) and boundary conditions (4.1), (4.2) and also relation (4.3) we obtain a 
system of linear equations of order 3M for determining the unknown quantities [@,/an] (m = 1, 2, 
3). Here boundary conditions (4.1) are only satisfied at non-corner points of the contour S, the second 
tangential derivatives are approximated using central finite differences, and conditions (4.2) are employed 
at the corner points. 
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Table 1 

Nx Ny p=o p = 90” 

01 02 03 04 01 02 03 04 . 

10 2 1.4631 0.2641 0.3312 1.2365 1.2579 1.5129 1.0621 1.3095 

20 4 1.2067 0.2658 0.2714 1.1080 1.1416 1.1578 1.0282 1.1297 

30 6 1.1291 0.2605 0.2546 1.0973 1.1311 1.1064 1.0208 1.0523. 

40 8 1.1129 0.2584 0.2515 1.1024 1.1401 1.1135 1.0215 1.0308 

5. NUMERICAL RESULTS 

To compare the results of the proposed method with existing methods we will use experimental and 
theoretical data [4], obtained for a model of a floating airport with the following parameters (are convert 
to dimensional variables). 

D = l.093x103kg m2/s2, h = 0.25 m, p = 10skg/ms 

L= 15m, B=3m, d=1.25cm, v=O.3 

For these values x = 28.52 and y = 0.05. The numerical results in [4] are based on a three-dimensional 
potential model using an expansion of the required solution in natural forms of oscillation of the plate. 

The convergence of the numerical results as a function of the number of nodal points is shown in Table 1, where 
we give the amplitudes of the normal sags of the plate Iwllu at its corner points 

0,(x=-L/2, y=B/2,), 4(x=L/2. y=B/2) 

03(x = L/2, y = -B/2), 04(x =-L/2, y = -B/2) 

for incidence of waves with period T = 27r/0.1 = 2s (o = 0.5015) at an angle p = 0” and 90”. 

A comparison of the results obtained using the proposed method for the amplitudes of the normal 
sags of the plate along its centre line (y = 0), with the theoretical and experimental results presented 
in [4] are shown in Fig. 1 for l3 = 0” and T = 1.46s (o = 0.6870) (a) and T = 2s (b). Curves 1 and points 
2 give the theoretical and experimental results respectively from [4], curve 3 shows the solution from 
[lo], obtained for an elastic strip of constant width L and infinite length, floating on the surface of a 
liquid of finite depth, while points 4 and 5 correspond to the results obtained for a rectangular plate 
of width B (IV* = 30 and NY = 6) and 3B (NX = 25 and N,, = 15). For numerical calculations for the 
strip, 20 non-propagating modes were taken into account. It can be seen that the proposed solution 
agrees quite well with the numerical results in [4]. When the width of the plate and the incidence of 

I (4 (b) 

0 
-20 0 20 x/h 

Fig. 1 
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the waves on its ends are increased the vertical displacements along the centre line are close to the 
corresponding values for a strip. 

In Fig. 2 we compare the results for a rectangular plate and a strip with T = 2s and oblique incidents 
of the waves: l3 = 30” (curves 1 and 2), 60” (curves 3 and 4) and 90” (curves 5 and 6). Here odd-numbered 
curves correspond to the rectangular plate with dimensions L and B and even-numbered curves 
correspond to a strip of width B. We show the amplitudes of the normal sags in the middle transverse 
cross section of the plate (X = 0). It can be seen that for p = 60” and 90” the normal sags of the rectangular 
plate and the strip are fairly close to one another, but for l3 = 30” the strip undergoes considerably 
smaller normal sags. This can be explained by the fact that in this case the surface waves are incident 
on the elastic strip at an angle less than the critical angle and they undergo total reflections, whereas 
for a rectangular plate the presence of the ends allows partial penetration of the waves into the plate. 
The value of the critical angle & is given by the relations [lo]. 

P, = arcsin(r&J 

where r is the wave number of the flexural-gravitational wave. In the shallow-water approximation 
r. = P kl and for T = 2s, fi, = 52” (the dimensionless value of r. = 0.3960). A more accurate solution, 
taking into account the finite depth of the liquid, gives 0, = 49” (the dimensionless values are 
k. = 0.5235 and r. = 0.3959). These values of l3, are critical for the ends of the plate x = -L/2, while 
for the side y = -B/2 one must use the value 90” - l3, = 38” (for shallow water) or 31” (for a finite 
depth). 

The behaviour of the amplitude of the normal sags of the plate at the corner points as a function of 
the angle of incidence of the surface wave is shown in Fig. 3 for T = 2s. Curves l-4 correspond to the 
corner points Ot-04. The two vertical dashed lines indicate the critical angles fi, and 90”- &. It can 
be seen that the sags at the corner points Oi and O4 depend slightly on the direction of the incident 
waves, whereas at points O2 and O3 there are considerable changes, and the maximum values of the 
sags occur when p = 90”- l3, (points 0,) and p = fi, (point 02). 

The behaviour of the diffracted surface waves far from the plate is best described using a scattering 
diagram. Figure 4 shows, in polar coordinates, lLZ(o, 0)/G as a function of the angle 8 for an elastic 
plate (the continuous curve), a rigid plate (the dashed curve) and a vertical cylinder (the dot-dash curve) 
for T = 2s and l3 = 0”. The horizontal dimensions of all the objects are identical. The greatest forward 
scattering is observed for the rigid plate, and the greatest reflection is observed for the vertical cylinder. 
The scattering cross-sections, calculated from (2.11), are: Q = 33.4 (the elastic plate) 39.7 (the rigid 
plate), and 23.4 (the vertical cylinder). Consequently, the floating rigid cylinder has the greatest scattering 
effect on the surface waves in the cases considered. 
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Fig. 3 

Fig. 4 

The results obtained show that the proposed method is an effective one for investigating the dynamics 
of an elastic floating platform acted upon by long surface waves (ksh < 1). Some extension of the results 
obtained towards shorter waves is possible using the Green-Naghdi model [2]. 

I wish to thank A. A. Korobkin for useful discussions and for indicating relations (1.2). 
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